<u>Ceatech</u>

Innovation for Industry

CHLORELLA VULGARIS HIGH-GLUCOSE SYRUP AS CARBON FEEDSTOCK FOR PHA-PRODUCING BACTERIA

Pablo Alvarez¹, Compadre A¹., Six A¹., Fleury G¹., Dubreuil C¹., Lainé C²., Lemechko P³., Bruzaud S²., Sassi J.F¹.

pablo.alvarez@cea.fr

¹Microalgae Processes Platform CEA Tech en Région Sud Centre de Cadarache, France ²Université de Bretagne-Sud, Institut de Recherche Dupuy de Lôme, UMR CNRS 6027 ³Institut Régional des Matériaux Avancés (IRMA)

TOO MUCH PLASTIC

- **Global production of plastics:** 322 million tonnes (2015)
- **EU** plastic waste: 25.8 million tonnes / year

EU PLASTIC WASTE GENERATION IN 2015

We need to reduce plastic consumption but also we need more **BIOPLASTICS**

Conventional plastics (Fossil-based, Non-biodegradable)

Polyethylene terephthalate (PET)

Polypropylene (PP)

Polyethylene (PE)

Bioplastics (Bio-based, Bio-degradable)

Starch blends Polylactic acid (PLA) Polybutylene succinate (PBS) **Polyhydroxalcanoate (PHA)**

KEY CONCEPT: STARCH FROM MICROALGAE

Microalgae

Microalgae production in photobioreactor

Microalgal starch

Bacteria production in fermenter

Bacterial PHA

Starch granules in nutrient-limited *Chlorella vulgaris*

PHA granules in nutrient-limited *Cupravidis necator*

Cheng et al., (2017) Improving carbohydrate and starch accumulation in Chlorella sp. AE10 by a novel two-stage process with cell dilution.

Nygaard et al., (2021) PHA granule formation and degradation by Cupriavidus necator under different nutritional conditions

C. vulgaris CCALA924

medium

PROCESS AT LAB-SCALE IN ERLENMEYER

Erlenmeyers in culture chamber

200µE/m2/s 11h/13h (Day/Night) 25°C, 2%CO2,150rpm

PROCESS AT LAB-SCALE IN PHOTOBIOREACTOR

25L Flat panel airlift photobioreactor

240µE/m2/s 20h/4h (Day/Night) 25°C, 2%CO2,

| 6

PROCESS AT SEMI-INDUSTRIAL SCALE IN PHOTOBIOREACTOR

25°C, 2%CO2,

DOWNSTREAM PROCESSING: MECHANICAL C. VULGARIS DISRUPTION

DOWNSTREAM PROCESSING: ENZYMATIC PRE-TREATMENT FOR *C. VULGARIS* DISRUPTION

	Factor		
Experiment	Macerocyme	Lysozyme	Chitinase
1: Ctrl Biomass	0	0	0
2: Mace	1	0	0
3: Lyso	0	1	0
4: Mace+Lyso	1	1	0
5: Chit	0	0	1
6: Mace+Chit	1	0	1
7: Lyso+Chit	0	1	1
8: Mace+Lyso+Chit	1	1	1
Extra			
*9: Mace (opt pH)	1	0	0
*10 (opt pH)	0	1	0

DOWNSTREAM PROCESSING:

MECHANICAL *C. VULGARIS* **DISRUPTION + ENZYMATIC HYDROLYSIS OF STARCH**

| 10

DOWNSTREAM PROCESSING: ENZYMATIC HYDROLYSIS OF CELL BROTH

SIGMA-ALDRICH: α -amylase \rightarrow A6180 amyloglucosidase \rightarrow A7095

Glucose release

Novozymes:

- 1) α -amylase \rightarrow Liquozyme SC4X
- 2) Amyloglucosidase → Spirizyme Fuel HS

MICROALGAL GLUCOSE AS FERMENTATION SUBSTRATE

• Halomonas sp. SF2003

Control = commercial glucose Test = Hydrolyzed algal supernatant

MICROALGAL GLUCOSE AS FERMENTATION SUBSTRATE CELL BROTH CLARIFICATION

Lab extraction in chloroform

Slow drying at room temperature in Petri dish

PHA extracted

Hydrolyzed algal supernatant as substrate

Water phase

Organic phase containing PHB

> Hydrolyzed algal broth as substrate

Tangential Filtration

glucose

glucose filtration

Innovation for Industry

CHLORELLA VULGARIS HIGH-GLUCOSE SYRUP AS CARBON FEEDSTOCK FOR PHA-PRODUCING BACTERIA

pablo.alvarez@cea.fr

Bio-based Industries Consortium

This project has received funding from the Bio Based Industries Joint Undertaking (BBI-JU) under grant agreement No 887474. The JU receives support from the European Union's Horizon 2020 research and innovation programme and the Bio Based Industries Consortium.

The sole responsibility for the content of this publication lies with the authors. It does not necessary reflect the opinion of the JU. The JU is not responsible for any use that may be made of the information contained therein.